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Abstract

Analyzing the design of networks for visual information routing is an
underconstrained problem due to insufficient anatomical and physi-
ological data. We propose here optimality criteria for the design of
routing networks. For a very general architecture we derive the num-
ber of routing layers and the fanout that minimize the required neural
circuitry. The optimal fanout l is independent of network size, while
the number k of layers scales logarithmically (with a prefactor < 1)
with the number n of visual resolution units to be routed indepen-
dently. The results are found to agree with data of the primate visual
system.

1 Introduction

An impressive capability of biological vision systems is invariant object recog-
nition. The same object seen at different position, distance, or under rota-
tion leads to entirely different retinal images which have to be perceived
as the same object. Only one of these variances, translation, can be com-
pensated by movements of the eye. The approximate log-polar transform
which takes place in the mapping from retina to cortex (Schwartz, 1977),
on the other hand, replaces some kinds of transformations (scale, rotation)
by others (translation on the cortex) and therefore does not fully explain in-
variant recognition, either. Invariant recognition, and how the visual system
performs it, remains a topic far from being understood.
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Invariance does not mean insensitivity to the spatial arrangement of vi-
sual information. While object recognition in our brain is invariant with
respect to the above-mentioned transformations, it is very sensitive to small
differences in the retinal activity pattern arising from, say, seeing both of
your twin sisters shortly after each other. We believe that the only way
a brain can solve these two competing problems realistically is to have a
general, object-independent mechanism that compensates variance transfor-
mations without distorting the image to convey a normalized version of it to
higher brain areas for recognition. Such a mechanism requires a routing net-
work providing physical connections between all locations in the visual input
region (V1) to all points in the target area (like IT). Additionally, neural
machinery is required to control these connections.

The necessity for dynamic information routing was appreciated early on in
vision research (Pitts and McCulloch, 1947), and several architectures have
been proposed, like Shifter Circuits (Olshausen, Anderson and van Essen,
1993) or the SCAN model (Postma, van den Herik and Hudson, 1997). What
has been missing so far is a discussion of efficiency in terms of required
neural resources. Different routing architectures require different numbers
of intermediate feature-representing nodes (we will refer to them simply as
nodes) and node-to-node connections (links from now on; if we mean both
links and nodes, we will use the term units). While we will not discuss
in this paper how connections in a routing circuit are controlled (for this,
refer to (Olshausen et al., 1993) and to (Lücke, 2005)), we assume that the
maintenance of a link and its control by a neural control unit have the same
cost as feature nodes (for a deviation from this assumption, see Sect. 2.1).
It is likely that cortical architectures have evolved which minimize this cost
for the organism. In this paper, we therefore derive and analyze the routing
network structure that minimizes the sum of all required units, both nodes
and links.

In our analysis we will focus on two situations. In Sect. 2 we discuss
routing between two cortical regions of identical size. This corresponds to
perception of an already coarsely segmented object. In Sect. 3 we consider
the architecture that must be present in real biological vision systems: Rout-
ing from a large input domain to a much smaller output domain, the first
corresponding to the whole visual field, the second to a small higher-level tar-
get area engaged in object recognition. After analysis of these two cases we
interpret our results quantitatively for the case of the primate brain (Sect. 4)
and discuss some implications and predictions arising from them (Sect. 5).
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2 Routing between two regions of the same

size

Let us define a routing architecture with as few assumptions as possible:

• Input and output stages both consist of n image points. Each image
point is represented by one feature unit (the extension of this to more
than one feature per image point will be discussed below).

• The routing between input and output is established via k − 1 inter-
mediate layers of n feature units each.

• Nodes of adjacent feature layers can be connected. For every such con-
nection there exists one dynamic, neural unit that controls information
flow in both directions. These units resemble the “control units” of
(Olshausen et al., 1993). We assume here that one link (including
its control unit) imposes the same “maintenance cost” as one feature
node. If these costs are not identical, this can be accounted for with
the parameter α introduced in Sect. 2.1.

Under these assumptions, what is the minimal architecture providing for
each input node one separate pathway to every output node? For k = 1, the
situation is clear: Without any intermediate layer, every input node must
be connected to all n output nodes. With intermediate layers, however, we
can make use of a combinatorial code to achieve full connectivity, similar to
”butterfly” computations used in the fast Fourier transform (?): We assume
that each input unit is only connected to l nodes of the adjacent intermediate
layer (see solid lines in Fig. 1(a)). Each of these l nodes has in turn connec-
tions to l nodes of the following layer, and so on, until the output stage is
reached. This method yields for every input node lk pathways to the output
stage, which are unique and lead all to different output nodes if we make
sure that no two separate pathways merge again on the way to the output
stage. An anatomically plausible way to meet this functional requirement is
to let the spacing between target points increase exactly by the factor l from
one link layer to the next, as shown in Fig. 1(a). The two-dimensional case is
analogous, except that here the groups of nodes projecting to the same target
are two-dimensional patches of l units with adequate spacing in between (see
Fig. 1(b)).
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Figure 1: Architectures for routing networks. (a) The one dimensional case, with n = 27 and k = 3, thus

l = n
1
k = 3. All feature nodes are shown (dots), but only selected links (lines), the others being shifted

versions (with circular boundary conditions) of the shown links. All connections from one input node to
the whole output stage are shown as solid lines, the connectivity between one output node and the whole
input as dashed lines. (b) The two dimensional case, with n = 64, k = 3, and l = 4. Only the downward
connections from a single output node are shown.
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The connectivity described here agrees with the general anatomical find-
ing that the spread of neuronal connections increases along the visual hier-
archy. Perkel et al. (Perkel, Bullier and Kennedy, 1986), for example, found
a higher divergence of projections between V1 and V4 than between V1 and
V2 or V3, respectively. In (Tanigawa, Wang and Fujita, 2005), a four times
larger spread of horizontal axons in inferotemporal cortex than in V1 was re-
ported. Note, however, that the specific connectivity of the routing network
is irrelevant for the results derived in the following. The only requirement is
that the pathways of every input node be unique and lead to different output
nodes.

In order to reach the whole output stage with these pathways, their num-
ber must equal the number of output nodes:

n = lk

From this we get the necessary neuronal fan-out at each stage as

l = n
1
k . (2.1)

Let us now calculate how many nodes are needed to realize the routing
architecture. Having k− 1 intermediate layers means that a total of (k +1)n
feature nodes is required. All of these nodes, except those of the output layer,
have l links to the next stage, resulting in a total of knl = kn

k+1
k links. So

the total number of units as a function of k and n is

N(k, n) = (k + 1)n + kn
k+1

k . (2.2)

As we can see in Fig. 2, this number changes drastically with the number
of intermediate layers being used. A direct all-to-all connectivity without any
intermediate layers (k = 1) is most expensive because the number of required
links scales quadratically with n in this case. For a very large number of
intermediate layers, on the other hand, the decrease in the required fan-out
l is outweighed by the linear increase in nodes caused by additional layers.
As we can see, there is a unique value kopt for which the number of required
units attains a minimum. To determine kopt, we calculate the derivative of
N with respect to k and set it to zero:

∂N

∂k
= n + n

k+1
k − k ln n

1

k2
n

k+1
k = n

(

1 + n
1
k − n

1
k

ln n

k

)

!
= 0
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Figure 2: The number of required units for a routing architecture between
two layers depends strongly on the number k−1 of intermediate layers being
used. The values shown here are for input and output stages of n = 1000
image points each.
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This is satisfied for
ln n

k
= n−

1
k + 1. (2.3)

With the ansatz
kopt = c ln n (2.4)

(2.3) becomes independent of n:

1

c
= e−

1
c + 1. (2.5)

Solving this numerically we obtain

kopt ≈ 0.7822 ln n. (2.6)

The fact that kopt scales logarithmically with n is not surprising by itself.
Such a scaling behavior lies at the heart of many techniques that have to
permute or operate on a group of nodes simultaneously, like permutation
networks or the fast Fourier transform (?). Even in random graphs the
network diameter (corresponding somewhat to our number of layers k) scales
logarithmically with the number of nodes. This general logarithmic scaling
behavior is independent of the specific fanout (or degree) at each node. A
different fanout only changes the basis of the logarithm, which is equivalent to
changing the prefactor in the logarithmic relation. Here, however, minimizing
the number of components of the network leads to a specific logarithmic
scaling, or phrased differently: The prefactor c in kopt is unique. This goes
hand in hand with the existence of a unique optimal fanout

lopt = n
1

kopt = e
1
c . (2.7)

We will discuss this finding further in Sect. 5.

2.1 More than one feature per image point

So far, we have neglected the routing of visual information when there are
several feature cells at one image point. Instead of a dense pixel array,
visual information in V1 is represented by a pattern of “hypercolumns” of
lower density. However, each hypercolumn contains cells responsive to many
different local properties of the input, such as wavelet-like features (Gabors)
at different orientations and spatial frequencies, different colors or specificity
for one eye or the other.
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It may not be necessary to route these features independently of each
other to higher areas, so one might assume that only one active link is needed
to route many feature units in one image location. On the other hand,
certain feature types do require individual treatment. For example, for full
orientation invariance, units of one orientation specificity of the input would
need connections to all orientation specificities of the output domain. The
truth probably lies somewhere in between these two extremes, as suggested in
(Zhu and von der Malsburg, 2004): Image points are not routed individually,
but in small assemblies through collective links called “maplets”. For every
group of nodes, there exist several such maplets, responsible for routing at
different scales and orientations without requiring individual links for all
features in all positions.

Since the focus of this paper is not on a specific routing architecture, but
on finding the optimal number of layers for a very general architecture, we
will merge the above arguments into a single factor α ≥ 1 representing the
number of feature nodes that are controlled by a single link. If necessary,
the parameter α can also be used to account for unequal expense assumed
for feature units versus link units.

Instead of n independent feature nodes, we now have nα = n
α

groups
of nodes, each containing α nodes. With this, the number of units in the
routing circuit (2.2) changes to

N(k, n) = α(k + 1)nα + kn
k+1

k

α . (2.2’)

Setting the derivative of (2.2’) to zero leads to

ln nα

k
= αn

−

1
k

α + 1 = 0. (2.3’)

The new ansatz
kopt = c ln nα (2.4’)

yields
1

c
= αe−

1
c + 1, (2.5’)

which we can solve numerically for explicit values of α. In Fig. 3 we see that
c—and with it kopt—only changes by a factor of 2 over a reasonably large
range of α.
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Figure 3: The prefactors c and c̃ define kopt through (2.4’) and (3.3) in
the cases of routing to an output of the same size or much smaller size,
respectively.
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Having determined the number of layers kopt that minimizes the required
neural circuitry for given n and α, we can calculate the size Nopt of this
minimal circuitry. Inserting (2.4’) into (2.2’) yields

Nopt(n) = n +
(

α + e
1
c

)

(cnα ln nα) . (2.8)

This means that for large n the number of units of the optimal routing
architecture between two layers of nα image points scales with

Nopt(nα) ∝ nα ln nα, (2.9)

as expected from classical network theory. This result holds also for routing
of only a single feature (α = 1) per point.

3 Routing circuit with different sizes of input

and output layer

Let us now discuss routing from the whole visual field to a comparatively
small cortical output region. We assume that an attentional mechanism
singles out, in the input domain, a region that is to be mapped to the output
region.

output

input

Figure 4: Routing network for an input of n = 125 and an output of n
m

= 8
nodes via k = 3 link layers. Consequently, the upward fan-out is l = 2. The
full lines show the links connecting an input node with the full output stage.
Downward connectivity is ldown = n

1
3 = 5 > l (shown exemplarily for a node

on the second level of the architecture by dotted lines).

We do not claim here that invariant recognition is perfect over the whole
visual field (there are studies showing that this is not the case (Dill and
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Fahle, 1998; Cox, Meier, Oertelt and DiCarlo, 2005)), but object recognition
is possible to some degree even at high retinal eccentricities, although of
course impaired by the poor resolution at these parts of the retina. In any
case, the basic problem remains the same as before: Dynamic connections
must exist between all parts of the visual input region and a target area.

Computationally, the situation is very similar to the one discussed in the
previous section and leads to a generalization of the results derived there.
We now want to connect an input stage of n units with an output stage that
is smaller by the factor m and contains only n

m
units. As before, the routing

is established via k − 1 intermediate layers, and groups of α nodes can be
routed collectively. With the same argument as in Sect. 2 we see that now
each group has to make

l =
(nα

m

)
1
k

(3.1)

connections to the next higher layer in order to connect every group of in-
put nodes with every output group. Fig. 4 shows parts of the architecture
required for routing from a 125 node input to an 8 node output stage. Note
that due to the different input and output sizes downward fan-out now has
to be higher than the upward fan-out l.

Differently from before, the size of intermediate layers is not well-defined
now. We will assume that the number of nodes changes linearly from the
input to the output layer. This is supported by measurements of the average
sizes of primary visual areas in humans (Dougherty, Koch, Brewer, Fischer,
Modersitzki and Wandell, 2003). Note, however, that the same paper re-
ports variance of V1 sizes of more than 100% between different individuals.
In general there seems to be little undisputed data on this question in the lit-
erature. Given this uncertainty in the anatomical data, the simplest possible
assumption is probably best for this kind of general discussion.

With a linear decrease in size, the number of feature units in layer κ

(κ = 0 for the input and κ = k for the output layer) is

fκ = n −
κ

k

(

n −
n

m

)

.

The number F of the feature encoding units of all layers is then

F =
k

∑

κ=0

fκ = (k + 1)n −

(

n −
n

m

) k(k + 1)

2k
=

n

2

m + 1

m
(k + 1).
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Adding the links emanating upwards from all but the top-most layer, we get
the total number of units as

N(n, k) = F +
1

α

(

F −
n

m

)

l

=
nα

2

m + 1

m

[

α(k + 1) +

(

k + 1 −
2

m + 1

)

(nα

m

)
1
k

]

.

(3.2)

Setting the derivate with respect to k to zero leads to

−α
(nα

m

)

−

1
k

= 1 +
ln nα

m

k2

(

2

m + 1
− k − 1

)

.

With the ansatz
kopt = c̃ ln

nα

m
(3.3)

this turns into

−αe−
1
c̃ = 1 +

1

c̃2 ln nα

m

(

2

m + 1
− 1

)

−
1

c̃
.

For large input/output ratio m, the term 2
m+1

becomes negligible, so that c̃

depends only on the number of independently routed output nodes nα

m
and

not on m itself:

−αe−
1
c̃ ≈ 1 −

1

c̃2 ln nα

m

−
1

c̃
. (3.4)

Numerical analysis of (3.4) shows, however, that c̃ changes by less than 10%
when nα

m
is varied over 3 orders of magnitude. So we can say that, like c in

Sect. 2, c̃ only depends on the parameter α. Fig. 3 shows that c̃ takes on
similar but slightly higher values than c.

Calculating the size of the derived routing circuit by plugging (3.3) into
(3.2) yields

Nopt =
(

α + e
1
c̃

) nα

2

(

c̃ ln
nα

m
+ 1

)

(3.5)

for large m. Although the relation is a bit different from the one derived
for equal input and output domains (2.8), the scaling with ñα ln ñα (here
ñα = n

αm
) remains the same.
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4 Physiological interpretation

The main goal of this paper is to raise the question of optimal information
routing in terms of required neural resources. In Sects. 2 and 3 we found
that the optimal number of link layers in a routing circuit is given by

kopt = c ln nα

and
kopt = c̃ ln

nα

m

for routing to an output stage of identical size and of much smaller size, re-
spectively. So in both cases, kopt is proportional to the natural logarithm of
the number of independently routed output nodes. The well defined prefac-
tors c and c̃ are very similar (cf. Fig. 3), depend only on α, and do not vary
too much over large ranges of α.

How do those results match the facts in the human brain? A good starting
point is the optic nerve, which is known to contain ∼ 106 fibers for humans
and other primates (Potts, Hodges, Shelman, Fritz, Levy and Mangnall,
1972). Since the optic nerve is the bandwidth bottleneck of the visual system,
it is safe to assume that it contains no redundant information. The number
of neurons in V1, however, is by far higher than the number of optic nerve
fibers, mainly for two reasons. First, the cortex employs a population coding
strategy in order to reduce noise and increase transmission speed. This means
that several neurons together (perhaps the ≈ 100 of a cortical minicolumn)
represent one of our abstract feature units. Second, visual information is
represented in an overcomplete code in V1 (Olshausen and Field, 1997),
increasing the number of feature units over the number of optic nerve fibers.
Nevertheless, the information represented in V1 cannot be higher than that
transported by the optic nerve, so that overcomplete groups of units can
be routed collectively. We will therefore assume that the number of feature
encoding units is of the same order as the number of fibers in the optic nerve,
keeping in mind that an overcomplete basis in V1 may be accounted for by
a correspondingly higher value of α.

From the primary visual area V1, visual information is routed retinotopi-
cally along the ventral pathway to a target region in inferotemporal cortex
(IT). Psychophysical evidence (van Essen, Olshausen, Anderson and Gal-
lant, 1991) suggests that about 1000 feature nodes are sufficient to represent
the contents of the two dimensional “window of attention”, and therefore
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the size of this target region, at any given time. One may assume that there
exist multiple such target regions in parallel in IT, which are used for differ-
ent object recognition tasks. But that question is outside the scope of this
paper.

How would our routing architecture look for these numbers? For this, we
still miss an estimate of the parameter α. Research in our lab has shown that
representing an image with 40 Gabor wavelets in each image point preserves
all necessary image information of gray scale images (Wundrich, von der
Malsburg and Würtz, 2004) and allows good object identification (Lades,
Vorbrüggen, Buhmann, Lange, von der Malsburg, Würtz and Konen, 1993).
To additionally include color and temporal information (direction of motion),
this number would have to be roughly twice as high. This is in line with
findings concerning the number of orientation pinwheels in the primate brain.
(Obermayer and Blasdel, 1997) report around 104 pinwheels for V1 of the
Macaque. Assuming a similar number for the human brain, we face the
situation of an input region of the ventral stream containing 106 feature
units clustered in some 104 pinwheels. If we assume that every pinwheel—as
a first order approximation of the functional “hypercolumn”—contains the
full set of visual features for a certain input location on one retina, it follows
that the number of these distinct features is of the order 100. Inputs from
the two eyes are treated independently here, so that successful stereoscopic
fusion can be achieved for arbitrary depths by activating the right routing
links.

While we have two agreeing estimates of the number of feature units per
resolution point, coming from computer vision and physiology, the number
α of features that can be routed together is difficult to estimate. It depends
on the kinds of invariance operations that are actually realized in the routing
circuit, as discussed in Sect. 2.1. We assume α to lie in the approximate
range of 2 to 5. For these values, the optimal number of layers for routing
(k + 1) from a 106 node input to a 1000 node output ranges from 4.3 to 5.8.
Fig. 5 shows these values, as well as the number of units required for the full
circuit when using the optimal number of layers.

The ventral pathway comprises the areas V1, V2, V4, and IT. IT in turn
consists of posterior, central, and anterior parts. In our setting it may make
sense to take into account this additional subdivision, since the receptive
field sizes of these three parts are very different ((Tanaka, Fujita, Kobatake,
Cheng and Ito, 1993), see also Fig. 4 in (Oram and Perret, 1994)), suggesting
that they form different stages of the routing hierarchy. Visual information
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Figure 5: Routing from an input stage of 106 to an output stage of 1000 nodes.
The upper part displays the optimal number of link layers as a function of α.
Below we see the total number of required units using the optimal number
of layers from above.
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is relayed from the lateral geniculate nucleus in a rather clear sequential
order V1→V2→V4→PIT→CIT→AIT, finally being combined with other
signal streams in the superior temporal polysensory area (STP). Note that
there exist at least equally strong feedback connections between the layers,
indicating the importance of recurrent processes in vision. The number of
4–6 distinct cortical stages (depending on whether we regard IT as one or
three stages) lies clearly in the range derived for our optimal circuit above.
It is therefore possible that the ventral pathway indeed performs computa-
tionally optimal information routing. At this point, however, this is only a
hypothesis, due to the great uncertainties in the available data. More explicit
interpretations would be possible if α could be narrowed down further (also
by quantifying the “overcompleteness” of V1) and if the stages involved in
the routing were known for certain. Also, more psychophysical work on the
information content in the window of attention would be desirable.

5 Discussion

We have seen in Sects. 2 and 3 that under some very general assumptions
there exists a clear optimality condition on the number of layers required to
build a routing architecture with minimal neural resources. This number de-
pends on the size of the target region as well as the number of independently
routed feature types. Within the given uncertainties, the derived numbers
agree well with physiological data.

Constraining the design of a routing architecture by an optimality condi-
tion, as we did, has the advantage of imposing an additional requirement
to an otherwise underconstrained problem. While the Shifter Circuit of
(Olshausen et al., 1993) addresses several anatomical and physiological facts,
there is no experimental or theoretical justification for some of the parameter
values chosen, among them the exact doubling of link spacing from layer to
layer. In the absence of experimental results dictating these values, we think
it best to follow some global optimality condition like proposed above.

We are well aware that our very general assumptions can be refined in
several ways, possibly changing the derived quantitative results:

• We avoided on purpose a detailed discussion of the kind of feature-to-
feature connectivity that may be in place to achieve scale and orienta-
tion invariance. This will be addressed in future work and will help to
narrow down the parameter α.
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• Routing architectures with many numbers of layers are a disadvantage
to the organism in terms of longer reaction times and more complicated
routing dynamics. This additional cost has not been considered here,
its influence would bias the biological routing architecture in favor of
fewer stages than derived here.

Although the main contribution of this communication may lie in intro-
ducing optimality criteria to the design of routing circuits, it also leads to
experimental predictions. One such prediction arises from the fact that the
notion of a static receptive field becomes meaningless if one embraces an ac-
tive routing process. During attention focusing and recognition, this process
would choose a certain routing path and deactivate all alternative pathways.
For a unit at the output stage in the hierarchy (IT), this would change the
functional receptive field from a very broad region to a narrow and specific
location. A unit at a medium stage of the hierarchy might even be bypassed
by the currently established routing pathway. There is ample evidence for the
behavioral plasticity of receptive fields (Moran and Desimone, 1985; Connor,
Gallant, Preddie and van Essen, 1993), and recent findings (Murray, Boyaci
and Kersten, 2006) show that even the size of representation in V1 can change
with an object’s perceived size (suggesting a scale invariant routing process
that already starts in the mapping from LGN to V1). However, these findings
are often interpreted as the result of a diffuse “attention modulation” mech-
anism, without taking the possibility of an explicit routing process seriously.
In the light of the rather specific geometric changes of receptive fields implied
by the presence of such a process, it should be possible to design attention
experiments that can clearly prove or refute the routing hypothesis.

While the above predictions are general implications of an active routing
process and have been discussed similarly before (Olshausen et al., 1993), the
quantitative results obtained here make some more specific predictions. An
interesting feature of the minimal architecture, already mentioned in Sect. 2
is that the number of links emanating from one node (Eq. (2.1) or (3.1)) is
independent of network size:

lopt = n
1

kopt

α = exp

(

ln nα

c̃ ln nα

)

= exp

(

1

c̃

)

. (5.1)

lopt is surprisingly low (between 3 and 9 for the range of α shown in Fig. 3).
This number should not be confused with the full number of connections
that a cortical neuron makes, which is known to be several thousand. First,
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here we only count the connections necessary for information routing, not
those involved in other kinds of processing or communication. Second, as
mentioned above, the functional units discussed here are abstract “image
points”, which in the cortex are probably made up of ≈ 100 spiking neurons
(like a cortical minicolumn). Single neurons in such a group would have to
devote the majority of their connections to homeostatic within-group connec-
tions (Lücke and von der Malsburg, 2004), which do not appear on our level
of abstraction. Nevertheless, the small fanout necessary for optimal routing
is an interesting feature and shows that by including the number of control
units into our optimization we have implicitly also minimized the required
connectivity of the routing architecture.

The optimal number of layers (Eq. (2.4’) or (3.3)), on the other hand,
scales logarithmically with network size:

kopt = c̃ ln nα.

This means that if more visual information has to be routed, the number of
routing stages increases, while the local properties (number of connections
that each node has to make) remain the same. Consequently, for species
processing different amounts of visual information, the ventral streams should
contain different numbers of routing stages. While the optic nerve of primates
contains on the order of 106 fibers (Potts et al., 1972), the number is 105 for
the rat (Fukuda, Sugimoto and Shirokawa, 1982), 2 · 105 for the cat (Hughes
and Wässle, 1976), and 2.4·106 for the adult chicken (Rager and Rager, 1978).
If we assume, as we did before, that the number of optic nerve fibers is a
measure for the number of input units of the ventral stream, and if the
number of output (IT) units changes by the same factor, then a rat would
optimally have 2.3 layers less, a cat 1.6 layers less, and a chicken 0.9 routing
layers more than a primate. The differences might be smaller, however, if the
size of the output stage does not change as strongly as the number of optic
nerve fibers, since kopt depends on the number of output units. Although
anatomical comparisons across species will be difficult, it may be interesting
to investigate different brains with regard to this question.
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Lades, M., Vorbrüggen, J., Buhmann, J., Lange, J., von der Malsburg, C.,
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